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Overview

• Via developing, “Geometric Structures” on manifolds give
rise to conjugacy classes of representations of
fundamental groups into various lie groups

• Want to understand the space R(Γ,G) := Hom(Γ,G)/G,
where Γ is finitely generated, G is a Lie group, and G acts
by conjugation.

• Want to understand the space R(Γ,G) locally near a class
of representations [ρ]

• Want to understand the space R(Γ,G) infinitesimally near
a class of representations [ρ].
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(G,X )-structures

Let let G be a Lie group acting transitively on a simply
connected manifold X , and let M be a manifold.

A (G,X )-structure on M is an atlas of charts {Uφ} such that
φ1 ◦ φ−1

2 agrees with an element of G on a neighborhood of
each point in Uφ1 ∩ Uφ2 .
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Developing

Using analytic continuation we can globalize the data of a
(G,X ) structure and obtain a map D : M̃ → X
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Holonomy

A developing map comes with a representation, ρ : π1(M)→ G,
with respect to which it is equivariant (i.e.
D(γ · x) = ρ(γ) · D(x)).

Let γ ∈ π1(M) and τγ the corresponding deck transformation of
M̃. D ◦ τγ is a new developing map. Since M̃ is simply
connected we see that D ◦ τγ differs from D by post
composition by a unique element of G, which we call ρ(γ).

Using the above construction we see that the corresponding
holonomies will differ by conjugation by an element of G. Thus
to a (G,X ) structure we associate a conjugacy class of
representations.
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The Associated Bundle
Given a (G,X ) structure we can construct a bundle that
encodes the developing map and holonomy. Let ρ be the
holonomy, then we form the bundle M ×ρ X = (M̃ × X )/π1(M)
Here we are using the diagonal action
γ · (m, x) = (γ ·m, ρ(γ) · x).

This bundle is flat, has structure group G, and comes equipped
with a foliation F coming from the quotient of M̃ × {x} and a
transverse section coming from D.
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Reversing the Construction

Given a flat bundle E π→ M with a foliation F as above we can
realize E as M ×ρ X for some representation ρ. Let

[γ] ∈ π1(M). Pick a basepoint m0 ∈ M and a path γ
representing [γ]. Pick a point e0 ∈ E0 = π−1(x0), then there is a
lift γ̃e0 starting at e0, lying over γ, and contained in a leaf of F .

The map e0 → γ̃e0(1) gives an automorphism of E0 (i.e. an
element of G). Since E is flat this only depends on [γ] and we
get a map ρ : π1(M)→ G.
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Realizing representations as (G,X )-structures

Using this bundle perspective we can show that if a
representation ρ0 is the holonomy of a (G,X )-structure on a
compact manifold then nearby representations also come from
(G,X ) structures.

Proof (Sketch)
Let ρ be near ρ0 then by covering homotopy property
M ×ρ0 X ∼= M ×ρ X and so the foliations F0 and F are “close”.
As M is compact the section D0 is also transverse to F and so
we have a (G,X ) structure.
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Proof by Picture
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Representation Varieties

If Γ is finitely generated and G is a “nice” group, then the set,
R(Γ,G) := Hom(Γ,G) is an algebraic variety.

More concretely, a presentation for Γ gives rise to a polynomial
function f : Rn → Rm, and R(Γ,G) is f−1(0).

If G = SL2(R) and Γ = Z/nZ, then f : R4 → R5 is given by
f (A) = (An − I,det A− 1), where we think of A ∈ R4.

If 0 is a regular value of f then f−1(0) is a manifold and the
tangent space to p ∈ f−1(0) is given by ker(f∗ |p)

Even if 0 is not a regular value we can think of these kernels as
a tangent spaces for R(Γ,G)
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Character Varieties

The way we attempt to realize R(Γ,G) as a variety is by looking
at the algebra of polynomials on R(Γ,G), which are invariant
under the action of G.

These invariant polynomials are generated by traces of
elements of Γ, and when G is “nice” this construction gives rise
to a variety.

However, this variety is not always the same as R(Γ,G)
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Character Varieties
continued

We need to exclude representations whose image is like(
1 t
0 1

)
because they cannot be distinguished from the trivial
representation by looking at traces.

To get a variety we need to restrict to the set R′(Γ,G) of “nice”
representations. In this case the quotient
R′(Γ,G) := R′(Γ,G)/G is a variety.
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Twisted Cohomology

Let G be a group and M a G-module. Define a cochain
complex Cn(G; M) to be the set of all functions from Gn to M
with differential dn : Cn(G; M)→ Cn+1(G; M) by

dφ(g1,g2, . . . ,gn+1) = g1 · φ(g2, . . . ,gn+1)+

n∑
i=1

(−1)iφ(g1, . . . ,gi−1,gigi+1, . . . ,gn+1) + (−1)n+1φ(g1, . . . ,gn)

Then Hn(G; M) = Z n(G; M)/Bn(G; M) is the associated
cohomology group, where Z n(G; M) = ker dn and Bn = Im dn−1.
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Low Dimensional Examples
H0(G;M)

C0(G; M) is the set of constant functions. If z ∈ C0(G; M) then

d(z)(g) = g ·mz −mz .

Therefore,

H0(G; M) = Z 0(G; M) = {m ∈ M | g ·m = m ∀g ∈ G}.

So H0(G; M) is the set of elements invariant under the action of
G.
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Low Dimensional Examples
H1(G;M)

If z ∈ Z 1(G; M) then

z(g1g2) = z(g1) + g1 · z(g2)

These maps are sometimes called crossed homomorphisms.

We have already seen that B1(G; M) consists of maps where
z(g) = g ·mz −mz for some m ∈ M.
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A Simple Example

Let Z act by conjugation (i.e. trivially) on R, then B1(Z,R) = 0
and if z ∈ Z 1(Z,R) then

z(mn) = z(m) + z(n),

and so H1(Z,R) = Hom(Z,R) = R is the tangent space to
Hom(Z,R) = R(Z,R) = R

In general, H1 can be thought of as a “tangent space” to
R′(Γ,G).
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H1 as a Tangent Space

Let ρ0 : Γ→ G be a representation, let g be the lie algebra of G,
and let Γ act on g, by γ · x = Adρ0(γ) · x .

Denote the resulting cohomology groups H∗(Γ, gρ0)

Let ρt be a curve of representations passing through ρ0.

For γ ∈ Γ we can use a series expansion to write

ρt (γ) = (I + zγ t + O(t2))ρ0(γ),

where zγ ∈ g.

In this way we can think of z as an element of C1(Γ, gρ0)
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H1 as a Tangent Space
continued

Repeatedly using this expansion again we see that

ρt (γ1γ2) = (I + zγ1γ2 t + O(t2))ρ0(γ1γ2) and

ρt (γ1)ρt (γ2) = (I + zγ1 t + O(t2))ρ0(γ1)(I + zγ2 t + O(t2))ρ0(γ2)

= (I + (zγ1 + γ1 · zγ2)t + O(t2))ρ0(γ1γ2)

Therefore zγ1γ2 = zγ1 + γ1 · zγ2 , and so ρt gives rise to an
element of Z 1(Γ; gρ0)

In this way Z 1(Γ, gρ0) is the tangent space to R(Γ,G).
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H1 as a Tangent Space
continued

If ρt (γ) = g−1
t ρ0gt , where gt ∈ G and g0 = I, then

ρt (γ) = (I − ct + O(t2))ρ0(γ)(I + ct + O(t2))

So for deformations of this type, zγ = γ · c − c, and so
z ∈ B1(Γ; gρ0)

In this way trivial curves of deformations give rise to
1-coboundaries, and so H1(Γ, gρ0) is the tangent space to
R′(Γ,G) at ρ0.
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Another Simple Example
Lets compute the dimension of H1(Z2, sl2(C)ρ0) where

ρ0(a) =
(

1 1
0 1

)
andρ0(b) =

(
1 ω
0 1

)
, ω 6= 0

Using “implicit differentiation” at t = 0 on the relation

ρt (a)ρt (b) = ρt (b)ρt (a)

we get a 2× 2 matrix equation that is equivalent to 2 complex
valued equations.
Using the exact sequence

0→ Z 0(Z2; sl2(C)ρ0)→ C0(Z2; sl2(C)ρ0)→ B1(Z2; sl2(C)ρ0)→ 0

We see that B1(Z2; sl2(C)ρ0) has dimension 2
Therefore,

dim H1(Z2, sl2(C)ρ0) = 6− 2− 2 = 2
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Consequences

Theorem (Weil 64)
If ρ0 is infinitesimally rigid (i.e. H1(Γ, gρ0) = 0), then ρ0 is locally
rigid (i.e. representations sufficiently close to ρ0 are all
conjugate)

• More generally, the dimension of H1(Γ, gρ0) is an upper
bound for the dimension of R′(Γ,G) near ρ0.

• One problem is that this bound is not always sharp (there
can be infinitesimal deformations that do not come from
actual deformations).

Example
f (x) = x2 gives rise to a variety that is a single point, but whose
tangent space is 1-dimensional.
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Rigidity Results

There are various situations where rigidity results are known to
hold.

Theorem (Weil)
If M is a closed, hyperbolic manifold of dimension n ≥ 3 and ρ0
is a discrete, faithful representation of Γ = π1(M) then
H1(Γ, so(n,1)ρ0) = 0
Similar results hold for cocompact lattices in most other
semi-simple Lie groups.

However when Γ is no longer cocompact then interesting
flexiblility phenomena can occur.
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Rigidity and Flexiblity

The previous result tells us that ρ0 cannot be deformed in
PSO(n, 1).

However, we can embed PSO(n, 1) into other Lie groups (e.g.
PSO(n + 1, 1), PSU(n, 1), or PGLn+1(R)), and ask if it is possible
to deform ρ0 inside of this larger Lie group.
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Rigidity and Flexibility
Examples

Quasi-Fuchsian Deformations

When n = 2 then quasi-Fuchsian deformations are and
example of a deformation from SO(2, 1) into SO(3, 1).

Projective Deformations

Cooper, Long, and Thistlethwaite examined deformations into
PGL4(R) by computing H1(Γ, sl4 ρ0

) for all closed, hyperbolic,
two generator manifolds in the SnapPea census.

A majority of these two generator manifolds were rigid, however
about 1.4 percent were infinitesimally deformable, and of those
several have been rigorously shown to deform.
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Rigidity and Flexibility
Non-compact Case

When M is a non-compact, finite volume, hyperbolic manifold of
dimension 3 there are always non-trivial, hyperbolic
deformations near ρ0, but only one whose peripheral elements
map to parabolics

In this case, we can still ask if ρ0 is locally rigid relative ∂M (i.e.
peripheral elements of π1(M) are sent to “parabolic” elements
of PGL4(R)).

Theorem (Heusener-Porti, B)
For the two-bridge links with rational number 5/2, 8/3, 7/3, and
9/5 are locally rigid relative ∂M at ρ0

There is strong numerical evidence that the knots 11/3, 13/3,
and 13/5 are also rigid in this sense.

Question
Are all two-bridge knots and links rigid in this sense?
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